NsA OR-1 72,553

NASA-CR-172553
NASA Contractor Report 172553 19860020075

AN EXPERIMENT IN SOFTWARE RELIABILITY

Janet R. Dunham
John L. Pierce

NOTTORE TAKEN FROM Tiis Reryag

Software Research and Development

Center for Digital Systems Research

Research Triangle Institute

Research Triangle Park, North Carolina 27709

Contract NASI1-16489
Task Assigiiment Nos. 12 and 14
March 1985 HERARY papy

Revised May 1986 S RGNS

LANGLEY RCSCARCH CENTER
LISRARY, Mags

A BaeTen, VIRGIMIA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

NASA Contractor Report 172553

AN EXPERIMENT IN SOFTWARE RELIABILITY

fanet R. Dunham
John L. Pierce

Software Research and Development
Center for Digital Systems Research
Research Triangle Institute
Research Triangle Park, North Carolina 27709

Contract NAS1-16489
Task Assignment Nos. 12 and 14

March 1985

Revised May 1986

NGe-29547

TABLE OF CONTENTS

AcknowledEmentoooiiiiiiiiee e ettt arr e ae e naea v

1.1 Background.....c.coooiiiiiiiiiiiiiiiiiiiiiri e sae e e 1
1.2 Project Goals ... e e 1
1.3 Summary of Study and ConclusionS......c.ccoueimiieeieiiiiniece e 2

2.0 PROJECT DESIGN

2.1 History Provides Perspectiveciiicieieririeiiirreeiiriiiceee e verceeveennccesaneeaecneanens 3
2.2 Transitioning from a Factorial Experiment to a Case Studyccoeeeeeeenennen. 3
2.3 N-Version Simulationccceeeiiiiiiiririiiiinii e rreeeec e e e 4
2.4 Repetitive RUD MOAelNE.....uuviiviiiiiiee ittt neecen e reeeeaseeeene e e e e 4

3.0 THE CODE UNDER TEST

3.1 The Launch Interceptor Condition Problem............cccocccoiiiiniiiiiiiiiniineens 10
3.2 Specification Failures.......ccocoviiiiiiii e e 12
3.3 The Usage Distribution....cceuiiiiiiiiiiiiiii et e e 12
3.4 The Pseudo-Random Number Generator.......ccccccoiviiiiiiiiiiiiiiiircece e 12

4.0 STEPS IN THE STUDY

4.1 Emulating an Actual Software Development Environment...............cc......... 13
4.2 Collecting Data During Development and Repair........cccccoieiiiiiiiiiinninninn, 14
4.2.1 Manual Data Collectionc.coevemiiiiiiiiiiiiie e, 14
4.2.2 Automated Data Collectionccoccuvirmniiiirieiiie i e 14
4.3 Generating the Error Data...........ooo i 17
4.3.1 The N-VERSION CONTROLLER ...ccttiiiiiiii v e e v enn e, 17

4.3.2 The USER INTERFACE ..., 17

5.0 DATA

5. SO W AT Tl U eS o eeeee et ee e e e ettt e e as s e e e e snseensseseenssnasnesnnsen 21

6.0 ANALYSIS

6.1 Time Independent Estimationcccceviviiiiiiiineiiiceiircees e e, 24
6.2 Time Dependent Estimation........ccceevviiirieeiiiiniiiiie e 24
6.2.1 Log-Linear Pattern of Error Rates......ccccocvuiiiiiiiiiiiiiiiniiinnninnnen. 24
6.2.2 Decreasing Error Rates......cccoueiiiiiiiiiiciiiiiieneciiee e eree e e e 27
6.2.3 Unequal Error Rates......cc.oviviiiiiiiieieiee et e s e e e 28
6.2.4 Confidence Limits for Mean Time to Error...ccccooveiiiveeininiiciiinneeen, 32
6.3 Limitations/Suggestions........cccovciiiiiriiiiriiiiicniniieiei e 32

7.0 CONCLUDING REMARKS

7.1 Results and Observationscccoocciiiiiiiiimiiiiii i, 34
7.2 Research Directions........ e e e et e b s e bt ee s e ae e e ser e e n seareas 34

8.1 References....ccoeeeevveuveveueiiueaennnnn. ettt et ettt a e neat s enraaaenarnaanaaenaan 36

LIST OF TABLES

Table 1. Input Cases to Failure for Replications of 500,000 Input Cases 6
Table 2. Number of Replicated Observationscooocviveviieciiiiviiiieciecieccnenen, 10
Table 3. Fault/Fix Descriptionscccocoviiiiiiiiiiiiiiiiiciin e 23
Table 4. Time-Independent Reliability Estimates.......ccccccoooviiiiiniiiiininniinnnnn, 24
Table 5. Logarithms of Error Rate Estimates By

Design Stage Number Error.....cccovvevimeiiiiiiieeiin et 25
Table 6. Trend Test Statistics.......ccceieviiiiiiiiiiie e 27
Table 7. Rates for AT1 and AT3 By Fix Applied....ccocoooiiireiiiiiniiiieeeiiieee e, 29
Table 8. Error Rate Test StatiSticscccevrviiiriiiieiiieiiriiieieeeeec e 32
Table 9. Confidence Intervals for Mean Number of Input Cases 33
Table 10. Input Cases to Failure by Fix Number for AT1....cccccooviviiiiiinininnn... 54
Table 11. Input Cases to Failure by Fix Number for AT2..........cccoiiiiiiiinnnnn. 55

Table 12. Input Cases to Failure by Fix Number for AT3........ccccccee i .56

LIST OF FIGURES

Figure 1. The Software Engineering Experience Questionnaire........cococveveeeneecinn. 5
Figure 2. Schematic Representation of the Launch Interceptor
Condition Problem.......c.ccciiciimmiimiiiiiiiiiiicccci e, 11
Figure 3. Program Fix Report............ OSSOSO 15
Figure 4. Instrumented Software Development Environment............c.ccoonvinnneen. 16
Figure 5. Design of the N-VERSION CONTROLLER........ccocoiiiiiiiiiiiciinen, 18
Figure 6. Menu/Display Interconnection Graph.........ccocoooiii il 20
LIST OF PLOTS
Plot 1. Input Cases to Failure for ATL ..o eae e, 7
Plot 2. Input Cases to Failure for ATQ2...ccocciiiiiiiiiiiieeeree ettt e ee e 8
Plot 3. Error Rate Estimates for Design Stage Number..........ccceeveeiiiininecnaennn. 26
Plot 4. Rates by Fix Number for AT1 ..., 30
Plot 5. Rates by Fix Number for AT3 ..., 31
APPENDICES
Appendix A. The Launch Interceptor Conditions.........cccoervriiiumniiumninnnaeneannnns 39
Appendix B. Input Generation Scheme for the Launch Interruptor
Condition Problemccccoeeiiiiiinieiiiiiiieeeeee e 48
Appendix C. Seeds for the Pseudo-Random Number Generator.........cccce ... 51
Appendix D. Failure Data ... e 53

tii

ACKNOWLEDGMENT

The authors acknowledge the technical guidance of Earle Migneault of NASA -
Langley Research Center during this investigation. We also thank Phyllis Nagel and
Jim Skrivan of Boeing whose report spurred our initial interest in this area and to Bev
Littlewood of City University of London, Larry Lee of NASA-LaRC, and Doug Miller of
George Washington University for their advice on statistical issues. Our appreciation is
also extended to the project participants, J. Dunn, Bill Ingogly, Barry Koster, Bill Har-
grove, Paul Morris, and Sam McBride for their hard work and determination. Finally,
we thank Brian Lupton of the Flight Controls Systems Branch of NASA-LaRC who was
the contract monitor for this project and our manager Jim Clary for his unfailing
enthusiasm about our work.

Janet R. Dunham
March 1985

iv

1. INTRODUCTION AND OVERVIEW

1.1. Background

Digital computers are having an increasingly important role in process control
applications, particularly those in which human life may be endangered, such as radar
tracking, flight-control, and medical life-support systems. Reliability requirements for
these systems are very stringent as system failure may incur extensive costs. For exam-
ple, NASA-Langley Research Center (NASA-LaRC) has used a requirement of a system
probability of failure of 107 for a ten hour flight as a working figure. [1]

Software is an integral component of these crucial digital systems, yet we presently
lack the appropriate methods for ensuring that the software is meeting the reliability
and performance requirements specified. Acknowledgement of the insufficiency of
development methods for avoiding and removing faults in software has led to the propo-
sal of different designs for tolerating them. As advocated by Avizieniz 2] and further
discussed by Anderson and Lee [3], one software fault-tolerant design is n-version pro-
gramming. Empirical evaluations of the reliability of systems implemented using this
and other software fault-tolerant designs for realistic applications are needed to deter-
mine their potential usefulness.

This document reports the goals, design, and results of a research project evaluat-
ing the reliability of software modules. The research involved the independent develop-
ment of three versions of a module for a radar tracking application and the execution of
these versions in an n-version system using inputs which simulate the operational
environment for the application. First, a brief history of the project is given, and the
reasons for its inception are discussed. This discussion highlights the differences between
the desired scope of the project and the scope which could be realistically impiemented.
Second, elements of the project are described: the emulation of a realistic software
engineering environment, the a prior: definition of the data to be collected and analyzed,
the process used for selecting the participants, the development of data collection and
evaluation tools and collection of the data. Third, the results of the data analysis are
presented. An appendix contains the failure data for each of the three software moduies
under test.

1.2. Project Goals

The primary goal was to gather more information on the failure processes for
software modules. The information collected consists of development and failure data
for the component modules. This information will be used to aid in the evaluation of
software reliability modeling techniques. A secondary goal was to independently verify
a portion of the research performed by Nagel and Skrivan of Boeing Corporation {4} by
using their repetitive run modeling approach but a different detection mechanism (i.e.,
n-version programming).

This study is part of a long term objective to determine procedures for evaluating
the reliability of flight control systems. Hence, this study also includes a pitch axis con-
trol problem not reported herein. The. pitch axis control problem was chosen to investi-
gate the phenomena of error bursts [5] for a real-time system with a feed-back loop.

1.3. Summary of Study and Conclusions

This study in software reliability was designed to emulate the software develop-
ment process. It was performed in a laboratory environment using the remote comput-
ing facilities of AIRLAB at NASA-Langley Research Center. The experiment can be
viewed as a case study which is being performed in a controlled laboratory setting.

As a part of the study, three moderate skill level programmers were given two
problems to code and debug. The problem requirements were written ir English, and
the programmers worked independently to code these problems in FORTRAN IV. The
programmers were permitted to compile and execute their programs freely prior to pro-
viding them for acceptance testing. A user was available to answer programmer ques-
tions. When a program for a given problem was completed, it was submitted to a series
of acceptance tests. Acceptance testing involved executing the program with a pre-
defined set of input data and comparing the program output with the pre-defined
correct output. Acceptance test failures (i.e., discrepancies between program outputs and
pre-defined outputs) were noted, and the program returned to the programmer for addi-
tional debugging. After all acceptance tests were passed by all programs for a given
problem, the programs were executed in an N-version system with inputs randomly gen-
erated from a specified probability distribution on the input space. Program outputs
were voted on to determine output correctness. Replicated trials were obtained using
the repetitive run modeling approach described in 2.4.

Summary_of Observations

The results obtained agree with those found in the Boeing study. The sequence of
program error. rates followed a log-linear pattern, and the individual “bugs’ occurred
with significantly different rates. Additional data is needed to investigate the impact of
dependencies among faults.

Recommendations

A sequence of smaller scale experiments coordinated among a set of collaborating
researchers appears to be the preferred mode of research. This preference is a result of
the extensive cost of collecting software failure data for reliability modeling and the
nature of unanticipated problems which occur during the conduct of this type of experi-
ment. Experiment data integrity requires a much greater extent of automation than one
would anticipate. Finally, while it would not be sensible to advocate more complex sta-
tistical techniques where simpler ones suffice, it appears that software reliability assess-
ment demands computationally intensive techniques and that simpler ones will not
suffice.

2. PROJECT DESIGN
2.1. History Provides Perspective

Knowledge about the design history of a project provides perspective as it contains
information about project development. For example, an important design decision
made for this project resulted in the use of three advanced skill level programmers for a
period of three months instead of using six moderate skill level programmers for one and
a half months. The ability to recruit and manage three programmers for a summer pro-
ject determined this design. Unfortunately, the accompanying reduction in sample size
precluded performing regression analyses aimed at correlating program failure data with
other programmer, development, and program characteristic data.

The paradigms used in designing this research project are analogous to those
recommended by F.P. Brooks for software design [6] and those recommended by Basili
and Weiss for software engineering data collection. [7] More specifically, the project
design was considered a prototype design with the inevitability of change planned for
and the need for automated tools recognized at an early stage. In addition, a great deal
of emphasis was placed on carefully defining the experimental goals and determining
guidelines for weighing design decisions. This meticulousness, although burdensome at
times, in our opinion, resulted in fewer difficulties during implementation. Design deci-
sion guidelines include keeping the investigation small scale and exploratory, defining
the data analysis methodology in advance, trying to collect as much data as possibie
without jeopardizing the goals of the project, supporting other work done in this field,
and not constraining the initial project design by implementation decisions.

In attempting to design the project to collect as much potentially useful data as
possible, an initial list of the data elements to be recorded was drawn up. This layout
resulted in a logical record length of 10,000 bytes per input case for the radar tracking
problem. A quick computation estimated the storage requirements at 10,000 bytes per
input case. Executing an average of 200,000 input cases per replication for 50 replica-
tions would require 1x10!! bytes of storage space per problem. This space requirement
resulted in a decision to record only input cases for which an application task or system
failure occurred. In other words, the decision to delete some potentially important
dynamic data for each input case (e.g., inputs generated, application task outputs. and
system outputs) was made only after much consideration was given to the desired data
elements. Other implementation decisions were made with respect to the project goals,
design ‘guidelines, and impact upon previous design decisions. Approximately 2.5 person
months of effort were spent formulating the project design and 1 person year of effort
was spent preparing for the experiment (e.g., selecting the programmers and developing
the necessary tools and forms).

2.2. Transitioning from a 23 Factorial Experiment to a Case Study

The foremost design decision was that the experiment be performed in a controlled
environment which emulated the production environment a software engineer wouid
face if he or she were developing real-time software for an n-version system. This deci-
sion was made in an attempt to counter the criticisms surrounding the lack of ‘“‘realism”
in software engineering experiments [8] and to thwart the influence of certain

uncontrollable and immeasurable exogenous factors in actual development environments.

A 23 factorial experimental design was proposed in which programmer aptitude and
problem difficulty were chosen as the two factors to be varied. Programmer skill was to
be grouped into basic, intermediate, and advanced categories; the problems to be coded
were based on three levels of difficulty. However, the sheer cost of obtaining a sufficient
sample size for the 23 factorial design resulted in the selection of three programmers of
an advanced skill level and their implementation of two problems. This reduction in
scope did not obviate the already carefully thought out design decisions. For example,
programmer selection considered the criteria reported by Moher and Schneider. [9] A
form was designed to screen applicants (see Figure 1), and those considered were
exposed to a series of rigorous interviews by the project staff. Although students were
employed, they had previous programming experience in full-time positions and were
enrolled in Master of Science degree programs offered by accredited Computer Science
Departments. A competitive salary was paid to attract the best qualified programmers.
The students were hired as programmer/analysts as part of a summer internship pro-
gram.

The reduction in scope from a 23 factorial experiment to a research project which
employed three moderate skill level programmers did change the project from a formal,
statistically designed experiment to a controlled laboratory investigation. Essentially,
the external validity of inferences based on these results would be even more suspect
than those made using the 23 factorial design. Increasing the sample size by repeating
the experiment, however, would permit one to make inferences about other projects. It
is important to note that most theories should be verified by multiple corroboration,
empirical repetition, and independent validation. Statistical significance is not the only
important attribute of a good experiment.

2.3. N-Version Simulation

After the programmers had completed a given problem, their programs or applica-
tion tasks (ATs) were executed in parallel using n-version simulation for error detection.
During n-version simulation, an input case was generated, and n-version outputs were
selected using three different decision rules. The AT outputs and the n-version outputs
were then compared with the output of an extensively tested version coded by a senior
analyst. In addition, the output for each of the ATs was pairwise compared. When an
AT output discrepancy was noted, the n-version simulation was halted, the discrepancy
analyzed, and an electronic mail message describing the input case and the error was
sent to the subject programmer. This process was repeated a number of times using the
Repetitive Run Modeling Approach.

2.4. Repetitive Run Modeling

The Repetitive Run Modeling Approach was first advocated by Nagel and Skrivan
of Boeing Computer Services. [4] This approach was developed to provide information
about the probabilistic impact of detected software faults on subsequent fault detection.
It involves repetitively executing a software module from an initial state or design stage
through to the detection and correction of n faults. Repetitive Run Modeling provides
“better’” estimates of the individual error rates. On subsequent runs or replications, the

(11
a1

(31

B.

(1l
(21
(31

C.

(11
21
(31
(41

(sl

(1l
(21
(3l
(41
(51

(61

SOFIYARE ENGINEERING EXPERIENCE QUESTIONNAIRE

(Please complete and return with RIY application).

NAME DATE

PLEASE PRINT

COMPUTER SCIENCE EDUCATION
How maxy bowrs of 'coay:tu- science courses have you takena?

Using & 4.0 scale, wvhat was your grade poiant average for these courszes?

Please list sny industry spomsored training seminars ian computer science
vhich you have takasn,

GENERAL SOFIYARE ENGINEERING EXPERIFNCE
How maxy years of full-time programming experience have yow bad? _____

Hov maxy yeaxs of part—time prograzmming experience bave you had? ___

How maxmy years of experience have you had pot{mhu the following

funations ?
defining requirements
preparing desiga descriptions
programming
testing code writtem by smother programmer
maintaining code writtea by you
maintaining code wvrittes by amother progriwmer

SOFIVARE FNGINEFRING PREFFRFNCES
That {s your favorite programming language?

Yhat is your favorite cperating systeam ?

Yhat is your favorits command language ?

Yhat is your favorite software developmeat astivity ?

List axy other progrsmming preferences that yox lave,

SPECIFIC SOFTIVARE ENGINEFRING EXPERTFNCE

In the space below, plesse desaribe the software dsvelopment projects that
have participated im. Attach additiomsl pages if necessary.

Include the following iz your desariptioa.

Projeat Title

Projeat Size (i.e. lines of code, 30.0f modules, no. of participants).
Project Duratiom (i.es, no. of years).

Projeet Desariptiom (i.e. tppliutlot ares, purpose).

Development Environment (i,e. progrzmmiag laaguage, operating lyltu.
command language, development techmiques).

Your Respoansibilities (i.e. full-time or part—time involvemenat, percent of
different aectivities pc:iauod).

(THANK YOU FOR COMPLETING THIS INSERT).

BQUAL OPFORTUNIIY/AFFIXNATIVE ACTION KNFLOYER 3/235/%3

Figure 1. Software Engineering Experience Questionnaire

program is returned to its initial design stage, and the same corrections are applied to
the failed program. Replications continue until enough observations have been collected
to achieve the desired level of statistical accuracy for the maximum likelihood estimate
of the program failure rates.

Replication Length

The length of a replication was determined by first executing the N-version system
for 500,000 input cases for four replications and then reducing the replication length to
10,000 input cases for the remaining number of replications. The choice of this replica-
tion length was based on the observation that most of the known program errors
occurred before executing 10,000 input cases as depicted in Plots 1 and 2. Table 1 gives
the actual failure times observed. These failure times are based on a number of faults
initially perceived: 11 faults in AT1, 1 fault in AT2, and 20 faults in AT3. For certain
input combinations, several faults can occur at the same time. This fixed length censor-
ing simplifies modeling and analysis by yielding a set of planned truncated observations.
Using input cases instead of execution time simplifies comparison of the reliabilities of
the independent implementations.

Table 1. Input Cases to Failure for Replications of 500,000 Input Cases

Code Rep Input Cases to Failure
“ATI1 1 1 3 27 46 65 110 953 135873 162506
2 1 60 97 110 116 210 0137 186106
3 I 2 58 78 116 468 5786 60450 88535
4 1 2 6 155 197 273 504 216484 424374
AT?2 1 1
2 1
3 2
4 2
AT3 1 1 2 27 234 1031 162506
2 1 7 19 60 655 186106
3 2 17 32 1057 1889 43594 88535
4 2 6 57 111 1505 424374

In. (No. of INPUT Cases to Failure)

15

—
(o]

(@2}

F(KREP‘}
P2 Rpgpq
EP3
Truncation
Level of
10,000 cases
1 2 3 4 5 6 7 8 9

Failure Number

Plot 1. Input Cases to Failure for AT1

In. (No. of INPUT Cases to Failure)

15

[y
o

(@2}

EP4
EB?
REP3
3 4 5 6 7 9

Failure Number

Plot 2. Input Cases to Failure for AT3

Truncation
Level of
10,000 cases

Replication Sample Size

Choosing the sample size involves determining k, the number of replicated observa-
tions of failures needed to accurately estimate p, the probability that the program will
fail (due to a specific fault) on a given execution. We assume a geometric distribution,

P(x) = (1-p)*!p, 0 < p <1 and 0 < x < 10,000

where P(x) is the probability that the program fails on input case x. The maximum
likelihood estimate (M.L.E), p, is obtained by computing the maximum of

k
L(p; X;.Xg, * * *) = [[(1-p)% ™ 'p for 1<j<k,
j=1

where L(p; x; X ...,Xy) is the joint likelihood function for k observations of x.

The M.LE. is p = , which s a biased estimator with an asymptotic variance

k
Exj
j=1

(using the Cramer-Rao Inequality [11]) of Var (p)> L(lk—ﬂ

In determining the sample size we wish to control the relative error, r, in the
estimated failure probability, p, with a risk of 1-a. That is, Pr(|p-p| > rp) < l-a.
Thus, setting

21_
gives
Z2
k= —=2 »(1-p)
r2

where Z;_, /o is the 1-a/2 point of the standard normal distribution.

Table 2 shows the number of replicated observations required for selected values o, T,
and p. Since we are interested in accurately estimating the reliability of programs
which have been debugged until p is sufficiently small, we should choose k based on p
small. But the allowable risk, 1-a, must presumably be compatible with the failure pro-
bability, p. This poses a problem because k increases as the allowable risk decreases,
and therefore, indirectly k increases as p decreases. This report is based on the current
number of k=25 replicates at the end of Task 14. We are gathering more data under an
additional task.

TABLE 2. NUMBER OF REPLICATED OBSERVATIONS

p=.05 p=.01 p==.005 p==.001 p=.0001 o=.00001

r 5] .25 10 b5] .25 .10 S 125 .10 S5 | .26 .10 S5 .26 .01 5 1 .25 01

1-a = .90 11 42 259 11 44 270 11 44 271 11 44 272 11 44 272 11 44 272

1- a

1- a = .95 15 | 59 365 16 | 61 381 16 | 62 383 16 62 384 16 62 384 16 | 62 384
= .99 26 { 102 | 633 (127 | 106 660 ({27 { 107 663 {127 | 107 | 666 ({27 | 107 666 1}27 | 107 666

1- o == 0099 || 43 | 169 | 1047 |[45 | 176 | 1091 || 45 | 177 | 1097 || 45 | 177 | 1101 {{ 45 | 177 | 1102 {;{ 45 | 177 | 1102

3. THE CODE UNDER TEST

3.1. The Launch Interceptor Condition Application Task

The Launch Interceptor Condition problem was originally reported in a 1973 study
by TRW |[11] and was used by Nagel and Skrivan in their study. The problem require-
ments specification can be found in Appendix A. The following paragraphs provide an
overview of the problem.

The launch interceptor condition problem specifies a part of a radar tracking sys-
tem that generates a launch interceptor signal based upon input radar tracking informa-
tion available at the instant the module is called. Values of input parameters determine
which combination of individual launch interceptor conditions are relevant to the
immediate situation. The interceptor launch key is normally considered locked; only if
all relevant combinations of launch conditions are met will the button unlocking signal
be issued.

The launch interceptor condition module determines whether each of 15 parameter-
ized launch interceptor conditions (LIC’s) are met for a set of up to 100 2-dimensional
points provided as input. Additional inputs dictate how to combine the outcomes of
these determinations to form a final unlocking matrix (FUM) from which the launch/no
launch signal will be computed. That is, the 15 individual launch conditions specified
are examined; a boolean decision is reached as to whether each condition is met, thereby
forming the conditions met matrix (CMM), a 15 element vector (one element per condi-
tion). The input Logical Connector Matrix (LCM), a 15 by 15 symmetric matrix, is con-
sulted to see which individual conditions must be considered jointly in some way. CMM
values are combined as indicated by the LCM to form the off-diagonal elements of the
preliminary unlocking matrix (PUM), also a 15 by 15 symmetric matrix. The PUM’s
diagonal elements, given as input, represent which launch interceptor conditions actually
matter in this particular launch determination. Each -diagonal element dictates how to
combine the off-diagonal values in the same PUM row to form the corresponding ele-
ment of the FUM. If, and only if, all the values in the FUM indicate a “go”’ condition is
the launch signal generated. Figure 2 provides a schematic representation of the prob-
lem. Implementation of the problem resulted in 419, 464, and 585 lines of uncommented
FORTRAN code with all known bugs corrected for AT1, AT2, and AT3 respectively.

10

LM

pPtM

Where box
with double
border in-
dicates _
camuterized
step.

aAnd

Shading of
outputs
indicates
values de-
termined at
that step.

Input Planar Points———) Launch
Conditions oM
Input LIC Parameters—— Examination ~
15
Input LCM Values > LM
15 x 15
Input PM Values > PUM
Diagonal
—
15
.._9 '
Logical
Combina-) PM
tions of
Individual 15 x 15
Conditions
—
—>| | Cambina—
tions of N
Conditions
that Matter 15
Test for 5 Launch/No Launch Signal
———>| | all FuM/1
equal 0/1 1

Figure 2. A Schematic Representation of the Launch Interceptor Problem

11

3.2, Specification Failures

During the acceptance testing phase and the n-version simulation of the code under
test, a few problems with the specification became apparent. The following list sum-
marizes the salient problems encountered with the specification provided to the pro-
gramrners.

(1) The words “all” and “‘any” confused the programmers.

(2) The computation of the area for Launch Interceptor Conditions 4, 11, and 15
resulted in a problem due to round-off.

(3) If one or both of the endpoints coincides with the vertex in Launch Interceptor
Conditions 3 and 10, the angle cannot be computed if one uses the definition of
an angle given in the VNR Concise Encyclopedia of Mathematics. [12] The
problem specification should contain statements about the precision of all vari-
ables.

Using a formal specification language provides more complete, consistent, and exe-
cutable specifications. The formal specification approach does not, however, eliminate
errors which result from misinterpreting the specification. Until advances are made in
improving the performance of executable specifications or in transforming programs,
using redundancy may be a viable technique for surfacing interpretation errors.

3.3. The Usage Distribution

The input data for the Launch Interceptor Condition Problem were generated
according to the usage distributions specified in Appendix B.

Several of the input data values were modified so that the usage of the programs
would include pathological input cases. The changes were made to the values used in
the Nagel & Skrivan study [4] and are identified in the last section, Input Data
Modification, of Appendix B. Since an objective of this research project was to test the
unequal error likelihood hypothesis and not to discriminate between the actual magni-
tude of the fault rates, these modifications do not have an impact on this research
objective. In retrospect, it appears that, rather than particular values of the parameters
(in Appendix B) having been chosen, the entire parameter set should have been made
random. The latter task is easily accomplished using the N-VERSION CONTROLLER
INTERFACE tool which is discussed in Section 4.3.2 of this report.

3.4. The Pseudo-Random Number Generator

The results of this study depend on the operational testing performed using the N-
VERSION CONTROLLER. A major component of this testing is the generation of
data according to the usage distribution specified in Section 3.3. Generation of this
usage distribution relies on a random number generation package. The GGUBT pack-
age [13] was selected for its computational efficiency and for its superior performance on
a battery of tests which detect departures from randomness. [14] GGUBT generates a
sequence of 2%!-2 uniform random deviates. It uses a linear congruential multiplicative
modulo 2%!-1 recurrence relationship with multiplier 397204094.

12

To ensure that the replications did not exhaust the random number sequence, an
upper bound for the number of deviates required was computed. Each input case gen-
erated requires 6p + 240 deviates, where p is the number of (x,y) coordinates which
describes the radar track. Since max p = 100, the maximum number of deviates
required per input case is 840. Thus, for 25 replications of 10,000 cases this simulation
requires in the worst case 2.1%x108 < 931-2 deviates. Appendix C lists the random
number seeds for the beginning of each replication.

4. STEPS IN THE STUDY

4.1. Emulating an Actual Software Development Environment

The three programmers coded and debugged a radar tracking problem adapted
from the Boeing study [4] and a pitch axis control algorithm for a Piper PA28 aircraft.
The problem requirements were specified in English, and the programmers indepen-
dently constructed their software designs and implemented them using VAX-11 FOR-
TRAN. Programmer questions related to the problem specification were directed to an
RTI staff member who functioned as a user for the duration of the project. This staff
member, who is a mathematician, had over 17 years of experience in FORTRAN pro-
gramming for applied mathematics applications. He coded and extensively tested his
own version of each problem and was, therefore, knowledgeable about the problem. He
provided information relating to programming style, documented all questions about the
specification, and answered similar questions as consistently as possible.

Another RTI staff member functioned as the project manager. This staff member,
who is a research software engineer, had over seven years programming experience and
five years program management experience. He developed the automated development
data collection tools and designed and oversaw the development of the N-VERSION
CONTROLLER and its associated INTERFACE. The programmers were instructed to
deal with the project manager in the event of system difficulties and
personnel/management problems. The project manager provided the programmers with
a system primer and a tutorial problem (i.e., a pseudo-mathematical specification of a
majority rule voter) so that they could become acquainted with the system.

Although acceptance tests and a fairly lenient deadline for program completion
were specified in advance, the programmers were not restricted to the amount of pro-
gram compilation and execution permitted before delivering the programs to manage-
ment. They were instructed to optimize program reliability first and program efficiency
second. They were informed that their programs were to be used in a prototype n-
version system for avionics research and that the reliability of the overall n-version sys-
tem would be evaluated. The programmers were also given special assignments and
were told that the special assignments had a lower priority than the development and
maintenance of the problem assigned.

Software tools were developed to support the experiment. These tools included a
programming environment, an N-VERSION CONTROLLER, and an N-VERSION
CONTROLLER INTERFACE. Information was captured both manually and with the
automated tools developed throughout the project.

13

4.2, Collecting Data During Software Development and Repair

4.2.1. Manual Data Collection

The programmers were asked to record their daily activities in an activity note-
book. These books were monitored to ensure that the appropriate information was
recorded. When a program failed during simulation, the programmer was notified by
electronic mail that his or her program had failed. The mail message indicated whether
or not an abend occurred or which bits in the CMM were in error. If an abend
occurred, the traceback message was provided. The input case which the program failed
to execute successfully was always provided. Changes made in the failed program were
annotated by using a special notation in the code. The notation used was a fixed format
program comment, and these comments contained a fix number, a fix type, a fix type
identifier, and the associated program change report form number. The fix type field
marked the beginning of a fix (Type B), the addition of a line of code (Type A), the
modification of a line of code (Type C), and the deletion of a line of code (Type D).
Deleted lines of code were retained by making them comments. The fix type identifier
for a Type B comment contained three 3-digit numbers which indicated the number of
Type A, C, and D changes associated with the single fix. The fix type identifier for all
the other comment types contained a three digit number which uniquely identified the
change as a part of the fix. Figure 3 depicts the program fix report used to manually
document fix information. The programmers received a set of guidelines for completing
this form. '

4.2.2. Automated Data Collection

Automated data collection during development and repair was achieved by instru-
menting the environment used by the programmers. The programming environment
provides a restricted subset of VAX/VMS commands for file manipulation, file editing,
and program compilation and execution. This environment automatically records infor-
mation about the programmer’s activities during program development, including the
dates and times at which the activities occurred. Files cannot be deleted by the pro-
grammers, so a detailed record of all file modifications is available. Figure 4 shows the
organization of the programming environment.

This system operates by means of a command line interpreter which resides
between the programmer and the VAX-VMS command line interpreter. Each command
line is parsed and checked for errors or disallowed actions. If the command is legitimate
it is executed. This execution is referred to as an event. The commands implemented
are:

FORTRAN HELP
LINK TYPE

. RUN PRINT
TESTED TCAI
DIRECTORY LOGIN
MAIL LOGOUT
EDIT

14

PROGRAM FIX REPORT

Programmer I.D.: Run I.D.:
Date: Replication:
Time: Design Stage:

Input case causing failure:

Source file name:

Version no. of file in error:

Version no. of corrected file:

Simulation Log Bock page no.:

Descripticn of error:

Description of f£ix (describe any unrelated bugs f£ixed in this design
stage): .

Staple the following listings to this form:
1. The input data that caused this failure
2. The abend traceback message, if applicable.

3. A listing of the old and new versions of your program with fixes
circled or highlighted.

4. All mail messages referring to hug.

All attachments should have the form number fram the top of this page
written on them.

Figure 3. Fix Report Form

15

Subject

CRT

/

Printer

Command Line Interpreter

1

A

A

A

[

A

4

Session Y Y Y 1
Raw Editor Compiler Linker Tester Help Mail
Data I Interface J_Interface [Interface {Interface fluterface [dlnt,erl’ace

/ y A i

Y

Y

—

Mailbox Mechanism

1

A

/

4

INSTRUMENTED SOFTWARE DEVELOPMENT ENVIRONMENT

Editor Compiler Linker { | Tester Help le, Mail |
EDT F77 Link
J ' A .
Y 4 /
User and
System Object | {Executable Help Mail
Files Used to Test Library Files
Source, Make Versions
Object Test
Test
Tracker
Data Programmer
Manager Manager's User
Station Consultant’s
Station
Report
Generator
4
Printer
/ Figure 4

16

A command language primer [15] which describes the environment is available and was
provided to the programmers along with the VAX-11 FORTRAN manual for their use
during program development. The statistics and text gathered for each event are:

command line program number
pointers to the files page faults

referred to process page counts
eITOrT Mmessages virtual peak
cpu time working set size
buffered i/0’s elapsed clock time
direct i/o’s user name
subject number terminal

The text data stored is dependent on the command executed. Edit commands cause a
new file, a pointer to the old file, and all of the editor commands to be stored. Compile
commands cause a pointer to the source compiled to be stored. Compiler errors, linker
errors and the errors generated by other commands are also part of the text data that is
stored.

4.3. Generating the Error Data

4.3.1. The N-VERSION CONTROLLER

After all three programmers had completed a given problem, their programs were
executed using a variant of the N-VERSION CONTROLLER shown in Figure 5. The
N-VERSION CONTROLLER models the usage distribution described in Section 3.3.
Its major components include a modeler, which generates a set of random problem
inputs on each simulation pass using parameters which are specified by the éxperimenter
when the simulation 1s initiated; a controller, which executes N versions of the program
against the problem inputs and passes the results to a set of selection programs; and a
stopper, which halts the simulation when one of the following occurs:

The N application tasks are not in agreement

One or more of the application tasks has abended

A predetermined stopping rule has been satisfied

One or more of the application tasks has overwritten shared memory

When the simulation is halted, a snapshot of the system state is written to a data file
for later analysis. This snapshot includes the inputs that caused the failure, the outputs
of all application tasks and voters, simulation parameters at time of failure, and a
number of flags indicating the cause of the failure. Snapshot file records are indexed by
simulation run, replication, design stage, and input case. The current values of all vari-
ables saved in a snapshot are accessible dynamically during simulation through the
simulation INTERFACE. A back-up log of simulation activity is kept manually.

4.3.2. The USER INTERFACE

The INTERIFACE uses table-driven menus for data display and simulation control.
It is described in greater detail in the INTERFACE User’s Guide {15]. The set of menus

17

8T

!) | ‘
FEED-BACK FEED-BACK
MODELER CONTROLLER REAL-TIME CHECKER REAL-TIME CHECKER
Application Application EQUALITY FEQUALITY
Test Task T A Taski 8, X 0,=0;i1 10;-0;] <E Decision DS, 3=S,i15,5;1 <E
Driver Interface . (AT,) Rules l
Viij = 1,...n; Mi=1...n %)
Application CORRECTNESS (Physical) CORRECTNESS (Physical)
T, X Timer T A Task2 8, > 10-¢] <aMi=1,.n; Decision g, > Sl <aMi=1...0
(AT,) Rules | -
. CORRECTNESS (Timing) . CORRECTNESS {Timing)
System Application | 1, O; Available Decision — 1. S; Available
Error T‘ A Taskn 6, A T) = st Time T Rules Sa > Tit) =, atTime T
Handler (AT,) ¢, O0; Not Avail- . S, Not Avail-
able at able at
Time T Time T
T > Monitor $ >
STOPPER STOPPER

Signal Accept, Replication Control

BN

DESIGN OF N-VERSION CONTROLLER

Figure 5

is kept small for the convenience and the experienced user aiike. The organization of the
menu/data display for the INTERFACE developed for the Launch Interceptor Condi-
tion Problem is shown in Figure 6.

The INTERFACE has commands for the examination of the simulation variables
and parameters during simulation and after a failure has occurred and for controlling
execution of the N-VERSION CONTROLLER. Snapshots of past failures can be exam-
ined with the INTERFACE whether or not the CONTROLLER is executing. The
INTERFACE currently provides the following types of commands:

e Select menu - go to a different menu in the graph.

o Examine data print the values of the variables in the display selected on the ter-
minal screen

e Next page - go to the next page of a multi-page display. This command is a car-
riage return. The last page of a display is circularly linked to the first page of
the display.

e Modify parameters - change the parameters controlling the simulation. Data
modification is password-protected, and certain parameters can only be changed
at the start of a run.

e Stop/start simulation - force the simulation to halt, or restart a halted simulation
from where it left off.

e Read snapshot - read a snapshot from the snapshot data file and display its vari-
ables instead of the active simulation variables. A snapshot can be selected by
replication number and design stage, or by failure number.

o Next snapshot - read the first snapshot in the next replication on the snapshot
data file.

e Initialize simulation - start a new run/replication/design stage by compiling the
specified application tasks, linking them with the N-VERSION, and starting exe-
cution.

Thus all major simulation functions and variables are under the control of the experi-
menter through the INTERFACE. The N-VERSION CONTROLLER can be restarted
from any past failure by directing to read the simulation failure state from the snapshot
data file. The parameter and stopping condition modification is password protected to
prevent inadvertent damage to the data during a simulation run.

Since the INTERFACE code is modular and table-driven, the INTERFACE can be
adapted to a variety of simulation problems with a minimal amount of effort. Menu
items can be added, deleted, or modified by changing fields in a FORTRAN common
block that describes nodes and arcs in the menu graph. Individual data displays can be
added, deleted, or modified by changing fields in another common block that describes
the format and screen position of data elements as subnodes on a display page; display
page graphs are arranged in a circularly linked list of pages to provide a method for
rapidly stepping through pages in a display.

19

Applications J

Constraints J

Inputs I

Constraints

Qutputs

/ AN
Run \
Set-up !
/
\ /
~ 7
~— -
T
]
Main
Menu
A
l ENVPAR
- Modeller Stopper
] FBPAR Menu Menu
l Inputs /
[Inputs
Applica- Voter
[Constraints tions Menu
Menu
[Qutputs
Con-
troller
Menu
ECON TCON|
PCON
(RN
I y- initialization
\‘ 7

<::>— menu display

display

- data display

Figure 6. Menu/Display Interconnection Graph.

20

Communication between the N-VERSION CONTROLLER and its associated
INTERFACE is accomplished with a set of event flags and a memory region that is
shared by both programs. When the INTERFACE examines the simulation variables
dynamically during simulation, it samples the shared memory region periodically, and
data are displayed from a local copy of the shared region. The N-VERSION CON-
TROLLER writes a new set of data into the shared region at each simulation pass. If
the experimenter issues a modify data request from the INTERFACE during simulation,
an event flag is cleared to indicate that a modify request is pending, and the INTER-
FACE suspends execution until the N-VERSION CONTROLLER sets the flag to indi-
cate that it has suspended execution so the INTERFACE can write into the shared
region. The INTERFACE must set another event flag to start up the N-VERSION
CONTROLLER after the data modification is complete.

5. DATA

5.1. Software Failures

Understanding the terms failure, error, fix, and fault is essential to the interpreta-
tion of the results obtained. For this problem, an application task failure is detected
when a task disagrees with any other unfailed application tasks or the extensively tested
version on its FUM, CMM, PUM, and Launch/No Launch output during simulation.
This disagreement event constitutes a failure, the incorrect element(s) of the output
variables (is/are) the error(s), and the minimum code change required to correct a single
error is a fix. The fault is the conceptual flaw in the program which is corrected by a
fix. Table 3 describes the faults in the three application tasks and provides the associ-
ated fix number. A few program abends and a memory overwrite were observed. How-
ever, most of the errors involved incorrectly setting the bits of the CMM. With the
exception of the fault identified by fix number 1 in AT2, there were no observations of
faults in computing the PUM, the FUM, and the FC. Fixes applied to FORTRAN func-
tions frequently caused errors in more than one bit of the CMM.

Appendix D shows the input cases to failure by fix number for each of the respec-
tive application tasks. The granularity used in reporting this failure information was
not immediately clear, but after some investigation, a decision was made to report the
failure data by fix where fix is associated with the finest error decomposition — in this
case an error in a bit of the CMM. The fault corrected by fix 10 of AT1 is a valid fault.
Its rarity (it occurred around 200,000 input cases on the long replications) provides a
reasonable explanation as to its non-observation during these 25 replications. Fixes 3, 4,
and 7 for AT3 are invalid fixes. They constitute changes to code for a ‘'perceived” fault
which was non-existent. The logic incorporated by these code changes is isomorphic to
the logic prior to the code changes. The fault corrected by fix 20 for AT3 was observed
on input case 43,594 on the third replication of 500,000 input cases. If one assumes that
input cases for each replication can be added, one would ‘“‘expect’ 1,043,594 input cases
for this fault to manifest itself. Note that there was no application of Fix 20 during the
25 replications of 10,000 input cases.

21

After running the simulation for the replications of 500,000 input cases, it became
evident that the fix application procedure was error prone and checks for avoiding these
errors should be implemented. One check resulted from the observation that the instal-
lation of a fix may correct the error but may not be the appropriate fix. This possibility
is an artifact of the boolean outputs. Checking all candidate fixes (i.e., fixes associated
with the error), provided some assurance that the correct fix was applied. On the
second long replication, it became apparent that for certain failures it was impossible to
convincingly chose the correct fix without a great deal of analysis. Since dependencies
among faults may be important for the modeling of the software failure process, we
intend to investigate the impact of this type of imperfect detection on the failure times
by repeating these replications and applying all combinations of fixes.

The application task output sometimes disagreed as a result of floating point com-
putations. These round-off errors resulted from the programmers using different formu-
las in computing the mathematical calculations required for deciding whether or not a
bit of the CMM was met. Changes to the application tasks were not made when a
round-off error occurred. Observations of round-off errors were recorded since it was of
interest to observe the frequency of round-off errors. Tallying these errors per input case
yvields a rate of 9.3 X 1075, As previously mentioned, observing round-off errors resulted
from an omission from the problem specification. Future specifications of the problem
should provide precision specifications for all variables and a utility for scaling all float-
ing point variables used in comparisons.

TABLE 3. FAULT/IIX DESCRIPTIONS

Code | Fix No. Description
ATI 1 Function ANGLEA overwrote data in common region by making
assignments to input variables.
2 CMM(5) - wrong data point was discarded due to erroneous index
specification in a loop.
3 CMM(7) - three erroneous index specifications.
4 CMM(5) - did not specify logic that if M < 1, CMM(5)
cannot be met.
5 Function RAD program abended due to an out-of-bound argument
when calling the FORTRAN library routine which
computes the arccosine.
6 CMM(8) - specified LT. on bound instead of LE.
7 Function ANGLEA failed to complete FIX DO 1 by not changing all
variable names.
8 Function ANGLEA program abended due to an out-of-bound
argument when calling the FORTRAN library
routine which computes the arccosine.
9 CMM(1) - used wrong formula to compute the difference between
2 points.
10 CMM(3) - inconsistent definition of a null vector with other ATs.
11 CMM(1) - inconsistent definition of a null vector with other ATs.
AT2 1 Used integer variable instead of boolean variable
when setting the FC.
AT3 1 CMM(7) fix for misinterpretation of any
2 CMM(13) fix for wrong variable N6 — N1
3 —6 | CMM(2) — CMM(5) inappropriate handling of computation
when the No. of data points is small.
7 — 15 | CMM(7) — CMM(15) inappropriate handling of
computation when the No. of data points is small.
16 CMM(7) - the upper bound of a do loop was incorrectly set.
17 Function AGLCOS program abended when trying to compute cosine.
18 Program abended due to a division by zero in function RADCIR.
DELETES an entire subroutine [ERRSTP]
19 CMM(3) - Program returned wrong value from AGLCOS. This fix
is related to fix 17.
20 Function PERDIS program abended when all 3 points were

the same.

23

6.0. ANALYSIS

6.1. Time Independent Estimation

A simple time independent estimate of reliability can be calculated by viewing the
program executions as a sequence of Bernouilli trials as done in [16]. Each replication
consists of 10,000 trials and the reliability per replication is the relative frequency of
successful trials. This simple estimate remains fairly constant for different replications
and uses little of the information in the data. In our case where we are repairing the
programs, this simple measure does not take reliability growth into account. It pro-
vides, however, a quick comparison of the reliabilities of the different programs. Table 4
gives this estimate for AT1 and AT3 averaged over the 25 replications.

TABLE 4. TIME INDEPENDENT RELIABILITY ESTIMATES

Code ATl AT2 | AT3
Reliability | .9992 | .9999 | .9985

6.2. Time Dependent Estimation

6.2.1. Log-Linear Pattern of Error Rates

One goal of this research was to determine if the error rates of the program design
stages, as the faults were discovered and removed, exhibited the log-linear pattern sug-
gested in the study by Nagel and Skrivan [4]. (The program design stage error rates in
this report correspond to the stage probabilities of the Nagel and Skrivan study). That
is, can an estimate of the error rate, A;, of the j*" design stage of a program be approxi-
mately represented by a function of the form

>‘J == ea+ﬁj

where j is the design stage number and «, 7 are coefficients to be determined. If there is
such a X;, then the reciprocal of the mean time to error of design stage j over all repli-
cates containing at least j design stages is an estimate. The absolute value of the loga-
rithm of this error rate estimate is tabulated by design stage number and test program
in Table 5 and plotted in Plot 3. The graphs exhibit a linear trend consistent with the
Nagel and Skrivan study. The larger the magnitude of the y intercept indicates the
longer mean time to observation of the first failure. The observed differences between
all slopes are a manifestation of the programmer effect and the use of a different error
detection mechanism.

24

TABLE 5. LOGARITHMS OF ERROR RATE ESTIMATES
BY DESIGN STAGE NUMBER

k.
Code | Design Stage | k; jtij | In); |
i=1
Number (j)
AT1 1 25 25 0
2 25 307 2.51
3 25 538 3.07
4 25 1174 3.85
5 25 2208 4.48
6 25 | 21525 6.73
7 20 | 29598 7.26
8 7 | 16338 7.82
9 2 6414 8.11
AT?2 1 25 39 44
AT3 1 25 32 | .25
2 25 | 353 | 2.65
3 25 | 809 | 3.48
4 95 | 1665 | 4.20
5 24 | 10792 | 6.12
6 21 | 28520 | 7.26
7 9 | 20364 | 7.82
8 4 9777 3.66

where k; is the number of replicates containing a j*h design stage, and t;; is the time to
observ atlon of an error of the j* design stage during replicate i. (Note that time, t;;, is

measured from the start of the Jth design stage during replicate i, not from the start of
the i*h replicate).

25

9c

15

10

[, (A) |

Design Stage Number

Plot 3. Error Rate Estimates by Design Stage Number

6.2.2. Decreasing Error Rates

Use of a software reliability model implies the existence of a trend in the failure
data. To test for trend we use the method of analysis described in Cox and Lewis. [18,
pp. 44-51] This test assumes that we are observing a time-dependent Poisson process for
which the rate of occurrence takes an exponential form. This assumption appears rea-
sonable based on the findings of the preceding section. To test for trend, we test the null
hypothesis of no trend

H:8=0

using the following test statistic which combines information from all replications:

3 { S 5 - Lnio)

where k is the number of replicates,
n; is the number of design stages less one during the ith replicate,

7,; is the time of the error observed in the j*" design stage during the i*? replicate
(note that here time is measured from the start of the replicate), and

7o is the duration time of the ith replicate.

This test statistic compares the centroid of the observed times with the mid-point of the
period of observation. The test statistic is approximately distributed as #(0,1). Table 6
gives the test statistics for AT1 and AT3 which both reject the null hypothesis of no
trend at the 95% significance level.

TABLE 6. TREND TEST STATISTICS

Code | Numerator | Denominator U RESULT
AT1 -140288 49450 2.84 REJECT
AT3 -95701 41950 2.28 REJECT

27

6.2.3. Unequal Error Rates Associated with Individual Fixes

Testing the unequal error probability hypothesis involves testing for the homo-
geneity of the failure rates of the different errors observed. Table 7 shows the absolute
value of the logarithm of the error rate by fix for AT1 and AT3. These rates are plot-
ted in increasing order in Plots 4 and Plot 5. To test the hypothesis of unequal error
rates we use the Maximum Likelihood Ratio Test described in Cox and Lewis. [18] The
null hypothesis of equal rates can be stated as

Hk1=>\2=>\3_—" R =k =k

(¢} n

Note that here \; represents an error rate associated with the j*' fix (or somewhat
equivalently, the jgh fault) as numbered in the 1°* replicate. Assuming that faults contri-
bute independently to the error rate of a program, the error rate of a design stage is
therefore the sum of the ;s associated with the faults still in the program.

Assuming that the times to observation of an error due to fault j are exponentially dis-
tributed, the test statistic under the null hypothesis is

N

j=1

In ;[- K In [IT]}

where N is the numbers of errors observed,

k; is the number of observations of error j,

N
I’ = S 1\1,
i=1
and T is the total time under test, in this case 250,000.

This test statistic asymptotically follows a chi-squared distribution with n-1.degrees
of freedom. Table 8 gives the test statistics for AT1 and AT3 using partial and full
data. Partial data omits the rates for the errors where less than ten observations
occurred from the analysis. Full data analysis includes all error rates. The null
hypotheses of equal error rates are rejected using full and partial data for AT1 and AT3
at the 959 significance level.

28

TABLE 7. RATES FOR AT1 and AT3 BY FIX APPLIED

k.
Code Fix kJ Z):Ti,j)\] | lne)\j | k] l lne)\j |
=1
ATl 1 25 26 | .9615 .039 975
2 25 35 | .7143 .336 8.400
3 25 1038 | .0241 3.726 93.150
4 25 11589 | .0022 6.119 152.975
) 25 1435 | .0174 4.051 101.275
6 25 2833 | .0088 4.733 118.325
7 25 4527 | .0055 5.203 130.075
8 22 | 101873 | .0002 8.517 187.374
9 1 | 248539 | .000004 12.429 12.429
11 2 | 144357 | .000014 11.176 22.352
PARTIAL | --- | 197 | 123356 | woeeeee | =eeee- 792.549
FULL — | 200 { 516072 | -eoeem | eeee- 827.330
AT3 1 25 34 | .7353 307 7.675
2 14 | 110335 | .00013 8.948 125.272
5 25 2421 | .0103 4.576 114.400
6 25 1093 | .0229 3.777 94.425
8 25 2421 | .0103 4.576 114.400
9 25 1093 | .0229 3.777 04.425
10 25 1093 | .0229 3.777 04.425
11 25 1093 | .0229 3.777 94.425
12 25 563 | .0444 3.115 77.775
13 25 1769 | .0141 4.262 106.550
14 25 1093 | .0229 3.777 94.425
15 25 1093 | .0229 3.777 94.425
16 25 1851 | .0135 4.305 107.625
17 24 68388 | .0004 7.824 187.776
18 25 29741 | .0008 7.131 178.275
19 1 | 124160 | .000008 11.736 11.736
PARTIAL | --- | 363 | 224081 1586.298
FULL --- 364 | 348241 1598.034

where here T;. is the time of observation of the error which gave rise to fix number j
during the i*h replicate; T, ; is measured from the start of the replicate following the one
in which fix number j last occurred, and \;j is the error rate associated with fix number j.

29

ot

15

10
)
50
5
0

5 6 7 4 8
Fix Number

Plot 4. Rates by Fix Number for AT1

11

10

1€

15

10

|Ine(Ap|

112 6 9 10 11 14 15 13 16 5 8 18 17 2

Fix Number

Plot 5. Rates by Fix Number for AT3

19 20

TABLE 8. ERROR RATE TEST STATISTICS

CODE ||H PARTIAL | RESULT || HFULL { RESULT
AT1 440 reject 4507 reject

AT3 7917 reject 7951 reject

6.2.4. Confidence Limits for Mean Time to Error

Since we have several failure times for each of the errors, it is useful to compute
confidence limits. If we assume that x;; the number of trials to failure of the jth error
has a geometric distribution which is identical for each of the i replications,
then
. ki Xj
m. = E —

! N

i=1
is a sufficient estimator of the mean. Using the charts in Clems [19] Table 9 gives the

ranges for x; and the 98% confidence interval for m; where k; > 20 for each of the
application tasks.

6.3. Limitations/Suggestions

[t is important to note that the primary goal of this specific research task is to col-
lect data on software failures. As a result, we restricted the amount of analysis per-
formed and have forgone ascertaining the quality of predictions given by the existing
software reliability models using this data. We have included the raw data in Section 5
of this report so that other researchers may use the data for modeling purposes. The
following paragraphs highlight some of its limitations as well as some suggestions for
further analysis.

Estimation with Few Data Points

It can be argued that the total number of errors observed in each of these programs
is too small to use for obtaining predictions from some of the existing reliability models.
This argument is problematic for two reasons. First, if we want to estimate the reliabil-
ity of the system using failure data on the component modules, we may not be able to
obtain enough observations of failures due to the module sizes. (Other studies [7] have
reported a positive correlation with module size and number of errors observed). This
type of estimation is important for reconfigurable systems constructed from program
libraries of certified software and for flight-control systems which tend to have software
components of small size. A second problem with the above argument is the time under
test required to collect data for accurately estimating the desired reliability. Miller has
indicated that to assure a very long MTTF requires at least an order of magnitude
longer time on test. [20] We suggest that the existing models be extended or new
models be developed based on small samples or that methods of accelerating error detec-
tion be explored.

32

TABLE 9. CONFIDENCE INTERVALS FOR MEAN NUMBER
OF INPUT CASES

Code | Fix | Min m; Max 98%% C.L
Lower | Upper
ATl 1 1 1.04 2 0 2
2 1 1.40 3 0 3
3 3 41.49 167 26 75
4 4 454.55 1476 300 R50
5 1 57.47 373 36 110
6 9 113.64 387 75 210
7 7 181.82 669 115 325
8 132 5000.00 13721 20994 105263
AT?2 1 1 1.56 6 1 5
AT3 1 1 1.36 6 0 3
5 4 97.09 324 60 175
6 4 43.67 136 28 - 85
8 4 97.09 324 61 180
9 3 43.67 136 28 85
10 3 43.67 136 28 85
11 3 43.67 136 | 38 &5
12 1 22.52 42 13 42
13 4 68.97 324 43 125
14 3 43.67 136 28 &5
15 3 43.67 136 28 85
16 3 71.94 253 45 130
17 4 2500.00 6635 1500 5263
18 76 1250.00 3971 800 2632

Proportional Hazards Model

We had two reasons for collecting descriptive information on the programmer
activity during development. First, this information characterizes the experiment.
Second, we intended to explore the use of this information as covariates in a propor-
tional hazards model as did Nagel and Skrivan. [4] The proportional hazards model is of
the form

At;z) = N (t)e??

where A (t) is an unspecified baseline hazard function, and z is a vector of covariates or
explanatory variables which act multiplicatively on the hazard function. [21] Using the

33

proportional hazards model, however, is not tractable due to the small sample size.
(Early in the experiment design, we considered having six programmers code one prob-
lem instead of three programmers coding two problems. Managing six programmers
would have limited our ability to closely supervise the experiment. As a result using
three programmers postpones the analysis of covariates until more experimental subjects
are added).

7. CONCLUDING REMARKS

7.1. Results and Observations

The results obtained corroborate those found in the Boeing study. The program
error rates exhibited a log-linear trend and the individual errors occurred with
significantly different rates.

While the experiment can be viewed as a case study performed in a laboratory set-
ting, the emulation of a realistic software development process increases confidence in
the application of the conclusions resulting from the experiment in a broader context,
i.e., real world projects. The following paragraphs describe some of the lessons which
have been learned from this experiment.

The sequential development of small scale experiments, such as this one, appears
more desirable than the one step investment in a large scale, large sample study. This
lesson resulted from several problems surfacing during the conduct of the experiment.
Cost is also a constraining factor affecting the number and character of the N-versions
to be developed, the number and skill level of the programmers and data analyses to be
generated.

One of the more vexing of the problems which arose was the difficulty of assuring
that the data itself was collected without error, ambiguities, and inconsistencies. This
problem was vexing because the execution control system had been developed to allevi-
ate this problem. Fortunately, an interface between the system and the experimenters
had also been developed and assisted in identifying and resolving data anomalies. This
problem has identified the need for even greater automation of the system i.e. not just
for efficiency of operation but also for raising confidence in the integrity of the raw data.

An additional problem involved the initial granularity in the definition of software
errors (as related to program fixes and program faults) which contributed to some loss of
information about the failure process. The initial definition was refined and resulted in
additional insight into the failure process, in particular dependencies among faults.

7.2. Research Directions

A sequence of smaller scale experiments coordinated among a set of collaborating
researchers appears to be the preferred mode of research. This preference is a result of
the extensive cost of collecting software failure data for reliability modeling and the
nature of unanticipated problems which occur during the conduct of this type of experi-
ment. Experiment data integrity requires a much greater extent of automation than one
would anticipate. Finally, while it would not be sensible to advocate more complex sta-
tistical techniques where simpler ones suffice, it appears that software reliability

34

assessment demands computationally intensive techniques and that simpler ones will not
suffice. Two possible modeling approaches are mentioned below.

Dependencies stemming from the order in which faults occurred and were fixed on
different replications may be important to modeling the software failure process. The
development of a competing risk model which used this information may be worthwhile
pursuing. This type of model is based on viewing the data as multivariate failure time
data and the problem to be solved as a competing risk problem. [21] This approach
involves estimating the failure rates for certain faults given the removal of some or all
other faults. Solving this problem necessitates the assumption that data under one set
of study conditions in which n faults are operative is similar to a different set of study
conditions in which only certain faults are operative. The failure rate function for a
given fault is affected by removal of other faults. That is, computation of the risks
associated with some failures must be conditioned on the occurrence and removal of a
masking fault. Kalbfleish and Prentice categorize this problem as largely nonstatistical.
They indicate:

It is unrealistic to think that general statistical methods can be put forward to estimate
failure rates under the removal of other causes. A good deal of knowledge of the physi-
cal or biological mechanisms giving rise to the failures as well as knowledge of the
mechanism giving rise to the removal of certain failure types is necessary before reason-
able methods can be proposed in any given setting. p.166.

This statement suggests that we should further investigate the underlying mechanisms
which give rise to these software failures.

Another approach is modeling based on the data domain instead of the time
domain. Development of a data domain model is computationally intensive, involving a
formal characterization of the input space and the consideration of the usage distribu-
tion as a walk through that space. Although not straightforward, the functional

transformation of data domain estimates into time-based reliability figures seems feasi-
ble.

35

8.0 BIBLIOGRAPHY

References

1.

[$4)

(2]

Tl

I5.

16.

J. R. Dunham and J. C. Knight, eds., “Production of Reliable Flight Crucial
Software: Validation Method Research for Fault-Tolerant Avionics and Control
Systems Sub-Working-Group Meeting,”” NASA Conference Publication 2222 (1982).
Algirdas Avizienis, “Fault Tolerance: The Survival Attribute of Digital Systems,”
Proceedings of the IEEE 66(10)(October 1978).

Thomas Anderson and P. A. Lee, Fault Tolerance: Principles and Practice, Pren-
tice Hall, London (1981).

Phyllis M. Nagel and James A. Skrivan, “Software Reliability: Repetitive Run
Experimentation and Modeling,”” NASA CR-165836 (February 1982).

G. E. Migneault, "Emulation Applied to Reliability Analysis of Reconfigurable,
Highly Reliable, Fault-Tolerant Computing Systems,”” AGARD Conference
Proceeding, (1980).

Frederick P. Brooks, Jr., The Mythical Man-Month: FEssays on Software Engineer-
ing, Addison-Wesley Publishing Company, Reading, Massachusetts (1975).

Victor R. Basili and David M. Weiss, “A Methodology for Collecting Valid
Software Engineering Data,” Computer Science Technical Report Series, TR-1235,
University of Maryland, College Park, Maryland (December 1982).

B. A. Sheil, “The Psychological Study of Programming,” ACM Computing Surveys
13(1) pp. 101-120 (March 1981).

Thomas Moher and G. Michael Schneider, “Methods for Improving Controlled
Experimentation in Software Engineering,” Technical report 80-8, Computer Sci-
ence Department, University of Minnesota (February 1980).

Pieter Eykhoff, System Identification Parameter and State Estimation, John Wiley
and Sons, New York (1974).

J. R. Brown and H. N. Buchanan, “TRW SDP 1776,” TRW Systems Group,
Redondo Beach, California (1973).

W. Gellert, H. Kustner, M. Hellwich, and H. Kastner, eds., The VNR Concise
Encyclopedia of Mathematics, Van Nosdrant Reinhold Company, New York (1977).

Reference Manual, IMSL Library, Edition 9, (June 1982).

G. S. Fishman and L. R. Moore, “Empirical Testing of Multiplicative Congruential
Generators with Modulus (2%%31) - 1.,” Curriculum in Operations Research and
Systems Analysis Technical Report 77-12, Curriculum in Operations Research and
Systems Analysis University of North Carolian at Chapel Hill (1977).

William F. Ingogly, “NASA Software Engineering Experiment VAX/VMS Com-
mand Language Primer,” RTI Research Document under NASA Contract NASI1-
16489, Research Triangle Institute (June 1983).

R.K. Scott, J.N. Gault, D.F. MecAllister, and J. Wiggs, “Experimental Validation of
Six Fault-Tolerant Software Reliability Models,” Digest of Papers FTCS-14 IEEE
Computer society Press Order No. 540 pp. 102-107 (1984).

17.

=1

18.

19.

B. Littlewood, P.A. Keiller, D.R. Miller, and A. Sofer, On the Quality of Software
Reliability Prediction Electronic Systems Effectiveness and Life Cycle Costing
Spring-Verlag, Berlin (1983).

D.R. Cox and P.A.W. Lewis, and J.K. Skwirzinski, e.d., V.R. Basili, and T.Y. Phil-
lips, FEwaluating and Comparing Software Melrics tn the Software Engineering
Laboratory, Springer-Verlag, New York (1983).

Kermig G. Clems, Confidence Limits in the Case of the Geometric Distribution,
Biometrika (1959).

Douglas R. Miller, “Some Statistical Issues in Assurance of Very Highly Reliable
Systems ,”" IEEE Computer Society Workshop on Laboratories for Reliable Systems
Research Abstract (April 1983).

J. D. Kalbfleisch and R. L. Prentice, The Statistical Analysz's of Failure Time Data,
John Wiley and Sons, New York (1980).

Appendix A
Launch Interceptor Conditions (LIC)

39

1.0 LAUNCH INTERCEPTOR CONDITIONS (LIC)

Conditions were specified in such a way that the resulting program would be similar
to a Site Defense program attempting to correlate radar tracking returns. Nineteen
parameters were required as input to precisely specify these conditions. The Launch
Interceptor Conditions (LIC) were defined as follows:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

Any two consecutive data points are a distance greater than the length, £,
apart.

Any three consecutive data points cannot all be contained within or on a
circle of radius r.

Any three consecutive data points form an angle, a, where a < (7 - €_)or a
> (7 + €,). Being measured here is the angle a's deviation from 180
degrees. "The second of the three consecutive points is always at the
vertex of the angle.

Any three consecutive data points form a triangle with area greater than
A. The three points are at the triangle's vertices.

Any M consecutive data points lie in more than Q quadrants. Where there
is ambiguity as to which quadrant contains a given point, priority of
decision will be by quadrant number, i.e., I, II, III, IV. For example, the
data point (0,0) is in quadrant I. Also, the point (-1,0) is in quadrant II.
The point (0,-1) is in quadrant IIl.)

For any two consecutive data points, P 1 and Pz, the difference of their
abscissas is negative, i.e., (X, - X,)<0.

At least one of any N consecutive data points lies a distance greater than
€ from the line joining the first and last of these points.

Any two data points (with n, consecutive intervening points) are a distance

- greater than the length, £, apart.

Any three data points (with n, and m, consecutive intervening pomts,
respectively) cannot be containeg within or on a circle of radius r.

Any three data points (with ny and m, consecutive intervening points,
respectively) form an angle, o, where& <(m-€,) ora>(m+€,). Being
measured here is the angle a's deviation from 183 degrees. Of “the above
first mentioned three data points. the second is always at the vertex of the
angle.

11)

12)

13)

14)

15)

Any three data points (with n, and m, consecutive intervening points,
respectively) form a triangle thh area lgreater than A. The above first
mentioned three data points are at the triangle's vertices.

For any two data points, P, and P, (with n consecutxve intervening points)
the difference of their abscissas is'negative, i.e., (X - X)<O.

Any two data points, with n, consecutive intervening points, are a distance
greater than the length, £, gpart. Also, any two data points (which can be
the same or different from the above first mentioned two data points),
with n axl consecutive mtervemng points, are a distance less than the length,
L, apart.

Any three data points, with n, and m, consecutive intervening points,
respectively, cannot be contained within“or on a circle of radius r. Also,
any three data points (which can be theé same or different from the above
first mentioned three data points), with n, and m., consecutive intervening
points, respectively, can be contained in of on a circle of radius R.

Any three data points, with n, and m, consecutive intervening points,
respectively, form a triangle with area greater than A. The above first
mentioned three data points are at the triangle's vertices. Also, any three
data points (which can be the same or different from the above first
mentioned three data points), with n, and m, consecutive intervening
points, respectively, form a triangle with area less than E. The above
second mentioned three data points are at the (second) triangle's vertices.

2.0 PROBLEM LOGIC

1)

2)

3)

Information was supplied indicating the logical connectors among all the
LIC, as defined in Section 1.0. The format was a symmetrical square
matrix where zero indicated NOT used, one indicated the OR connector
between two conditions and two indicated the AND connector. The matrix
was identified as the Logical Connector Matrix (LCM).

Part of the output data was a column matrix with resultant information as
to whether or not the LIC were met, i.e., for each condition, zero meant
the condition was not met and one meant it was met. The identification
for this matrix was Conditions Met Matrix (CMM).

Preliminary unlocking information was generated. By definition, these
were criteria which determined whether or not interceptors would be
launched. These data were determined by the interaction of the LCM and
CMM matrices to form the Preliminary Unlocking Matrix (PUM). Defini-
tions of the matrix elements indicate how the two matrices interact to
form PUM. The diagonal elements of PUM were input according to the
desired or required unlocking sequence, i.e.,, a one indicated that the
corresponding LIC was to be considered as a factor in signaling interceptor
launch and a zero meant that it was not a factor. Non-diagonal elements
were determined by the LCM operating as a Boolean operator, as defined in
Section 2.0.1, on the operand CMM.

41

4) The Final Unlocking Matrix (FUM) was generated by having the PUM

5)

diag?n)al operate on non-diagonal elements. An element in the FUM was
one (1) if:

The corresponding PUM diagonal element was zero (0), indicating no
interest in the associated LIC; or

The corresponding PUM diagonal element was one (1) and all other
elements in that diagonal element's row were one (1).

An element in the FUM represented the final conclusion with respect to its
corresponding LIC.

In order to launch an interceptor, all elements in FUM had to be equal to
one. In this case, the message "NOW" was generated and output to the
printer, together with a Isting of all input data values. The information
from all matrices was printed. The output was in matrix format for ease
of interpretation.

3.0 DATA INFORMATION

1)

2)
3)

4)

5)

6)
7)

Pairs of values for the rectangular coordinates (x, y) represented data
points.

An input data set contained a maximum of 100 ordered data points.
P = number of data points in a data set.

The input data constants, as defined in Section 1.0 were specified for each
input data set.

Restrictions on the input parameters were as follows:
P>2, £20,r20,0<€,<m, A20,M<P, 1£Qs3,
€,20,L20, R20,E20.

The Logical Connector Matrix (LCM) element values were given as input.

The Preliminary Unlocking Matrix (PUM) diagonal element values were
given.

For the actual data values, see the example matrices in the following
sectien.

42

4,0 EXAMPLE MATRICES

The following matrices are a model of the problem logic, as defined in Section 2.0.

Logical Connnector Matrix (LCM) (Input)
{1 2 3 4 5...15 *, Launch Interceptor Conditions
: (LIC)
112 2 1 0...0
212 2 1 0...0 Since we have zeros beyond the
fourth LIC, the 5th through the
311 1 2 0...0 I5th LIC are not to be consid-
ered in this example.
412 1 1 0...0
510 0 O 0...0
15/0 0 0 0 0...0

Definition - L, is the ij™" element in the LCM.

. Conditions Met Matrix (CMM) (Output)
Condition Value
1 0
2 1
3 1
4 0
5 0
15 0

Definition: Ci is the it

h

element in the CMM. |

The Ci are computed output, but in order to illustrate this example, we are
arbitrarily setting these elements in the CMM.

43

Preliminary Unlocking Matrix (PUM) (Oufput, non-diagonal elements)
(Input, diagonal elements)

Lict 1 2 3 & 5.,..15

15 1. 0

Furthermore, defining the ijth element in the PUM as P.., we have the following:
P,, = P,, = 1 and all other P.. (i.e., the diagonal elements)'hre zero. This means that
or{rg' the %irst and third LIC ate required in the unlocking sequence. Note that these
are input values.

p-12 = 0 since, L, = 2, signifying the AND condition for C, and <, which are

zero and one, respectively, i.e,, 0] = 0.

P13 = | since, L13 = 1, signifyng the OR condition for Cl and C3 which are zero

and one, respectively, i.e, 0+ 1 = 1.

Pla = 0 since, Lig=2 signifying the AND condition for C1 and Cy which are

both zero, i.e., 00 = 0.

P,. =1 since L, = 0, signifying the Not Used condition for C, and C.. The above
15 1 5
exdmples show how to generate the pij values.

Final Unlocking Matrix (FUM) (Output)

LIC | VALUE

LW T I WU S
—_ e e = O

15 !

Definition: F | is the ith element in the FUM.

F,=0sinceP,, =1landP,,=P 4 = 0, i.e., the diagonal value is one and there
is'at least onelzlero elemenltzin th&e first row of PUM.

F2 = 1, since P22 = 0.

Fy= 1, sinceP33=iandPBl=P32=P34=P35=...=P3’15= L.
Fa = |, since pz;'a = 0.

F5=F6=...=F15: l,since,P55=966=...=P15,15=0,

respectively.

Since there is a zero element in FUM, (F 1= 0), the launch interceptor condition
is,not met, .

5.0 SUPPLEMENTARY INFORMATION

L.

2‘

5.

The program will be written in FORTRAN on the BITS system.

No double precision or complex variables are required.

Your program will be a subroutine.

Assume the inputs are in labeled common, i.e., COMMON/INPUTS/ X(100),

Y(100), EL, ... using the order in Section 6.0. You are free to use your own
variable names, however,

Qutputs will be in labeled common, i.e., COMMON/QUTPTS/CMM(15), ... using
the order in Section 7.0. Again you are free to use your own variable names. -

Use the IFOUT flag to control printing. Code the output statements, but
branch around them if [FOUT = .

7. When the first and last points of N consecutive data

points are identical, then

the calculated distance to compare with € (LIC #7), will be that distance from
the coincident point to all others of the N consecutive points.

6.0 INPUTS

I. Data Points

accurate to one decimal place

(xi’ Yi)

2. Nineteen Parameters

1.
2.

6.

&.

10.

i1,
12.
13.
14.

15.

le6.
17.
18.
19.

1

r

€
2

Z2 m o

real

"
L]

"
integer
"

real

integer

"

real
real
real

integer

i=l, ..

real

., P

25P<100

46

1

3. LCM Array I_CMi . i=l,. . ,15 integer
2 j=lye o ol5
4, PUM array _
Diagonal Terms PUMi i i=l,. . ., 15 integer
?
5. P - number of data points integer
6. IFOUT - Controlling output, i.e., = 0 Program prints output
= I Program prints no output
integer
7.0 OUTPUTS
1. Conditions Met Matrix CMMi, i=l,-,15 integer
2. Final Unlocking Matrix FUM., i=1,~,15 integer

3. "LAUNCH" or "NO LAUNCH"

(Use a logical variable which is true for launch and false for no launch).

4, Prelimi i i i in
reiiminary unlocking matrix PUM].. 1=1, «.45 15 integer.

47

Appendix B
Input Generation Scheme for the Launch Interruptor Condition Problem

(X.Y) Coordinates

The (X,Y) Coordinates describe a radar track. Ninety-five percent of these (X,Y)
coordinates are uniformly distributed within the region bounded by the lines connecting
the points (5,0), {0,5), (-5,0), and (0,-5). Five percent of the (X,Y) coordates generated
are uniformly distributed within the combined regions bounded by the lines connecting
the points (20,20), (40,20), (40,40), and (20,40) in each of the four quadrants.

LCM Flements

The 225 elements of the LCM were generated according to the following
specification:

Let the LCM be defined as a symmetric matrix { L;; }
where

iis the row index
j is the column index such that i < j

then
Lii S 2 fOI' alll
j=1234,56,7789,1011 and

i<j,and
Pr{Lij=1}=.203nd
PT{LIJ=2}=.02

PUM Flements

The fifteen diagonal elements of the PUM were generated according to the follow-
ing specification:

Let the PUM be defined as the matrix { P;; }

where
i is the row index and
j is the column index,

then
Pr{P; =0} =0.5, and
Pl‘{Pu=1}=0.5

for all i,j = 1,2,...,,15 and i=j.

LIC Parameters

All of the Launch Interceptor Conditions had parameters associated with them.
The values of these parameters are:

49

1=14.5
r=7.1
€ = 0.5
A=50
M=+
Q=3
=4
€1 =15.0
L=10
R=5
E=25
n1=n2=n3=n4=l
g = 5
My = Mg = Iy = 0

Input Data Modification
1. P was generated according to a UNIFORM (2,100) distribution.

2. The parameter M was changed so Launch Interceptor Condition 5 which
specifies that “M consecutive data points lie in more than Q quadrants”
could be met with Q=3. If M <= Q, this condition would never be met.

3. The parameter L. was changed so Launch Interceptor Condition 13 which
specifies ““any two data points ... are a distance less than the length L apart”
can met with non-identical points.

4. The parameter R was changed so that Launch Interceptor Condition 14
which specifies that ‘““‘any three data points ... can be contained in or on a cir-
cle of radius R’’ can be met with non-identical points.

5. The parameter E was changed so Launch Interceptor Condition 15 which
specifies ‘‘Also, any three data points ... form a triangle with area less than
E” could be met with non-identical points.

6. The parameter €5 was changed so that Launch Interceptor Condition 3 which
specifies ‘“Any three data points form an angle, a, where
a<(m-¢€) or a>(n+ €9). " would not always be met.

7. The parameter m; was discarded since it is not used by any of the conditions.

Appendix C
Seeds for the Pseudo-Random Number Generator

51

REPLICATION SEED
1.0 1436099972
2.0 0744513290

2.01 0744513290
2.1 0744513290
2.2 0744513290

- 3.0 1751976185

3.1 1751976185
3.2 1751976185
3.3 1751976185
4.0 0031162681
5.0 1914684009
6.0 0957636397
7.0 1523183247
7.1 1523183247
7.2 1523183247
8.0 0255979618
9.0 0412542844

10.0 0366320340
11.0 1776255921

12.0 1863079069

13.0 1949058887

14.0 0095717758

15.0 0084721889

16.0 1670222942

16.1 1670222942

16.2 1670222942

17.0 1282766561

17.1 1282766561

17.2 1282766561

18.0 1937632417

19.0 0246022436

20.0 1927677362

52

Appendix D
Failure Data

TABLE 10

INPUT CASES TO FAILURE FOR APPLICATION TASK 1

Table shows input cases to failure from start of replication for

designated fix.

--- Indicates that error did not occur and fix was not applied during

the replication.

Fix Number

Rep 112 3 4 5 6 7 8 9 10 11

1 111 43 1476 | 151 | 101 | 204 2086 - -- -—-
2 111 33 228 24 161 | 177 893 - - --
3 111 69 540 78 280 | 371 4969 - -—- --
4 1|1 19 277 48 48 25 3036 --- -- -—-
5 1 {1] 116 514 9 34 364 1376 - -- -—-
6 113 84 56 46 60 7 132 - —- --
7 211 38 413 4 239 | 257 --- --- -- --
8 111 14 617 193 15 175 1933 - - --
9 111 27 149 7 219 51 --- - -—- -—-
10 1] 2 7 1102 14 143 | 338 344 - - --
11 112 3 589 64 | 273 | 469 | 3466 --- -- -—--
12 111 7 188 87 142 | 106 | 3905 - -—- ---
13 112 21 319 S 387 42 6606 ——- --- | 4160
14 1 {1 3 1078 61 111 | 150 1900 - -—- --
15 142 17 4 14 24 317 5235 - - -—-
16 1]2 32 13 4 117 8 4165 --- --- 197
17 171 30 454 373 50 20 4813 --- - --
18 11| 167 980 81 113 16 - - --- --
19 111 58 25 37 24 25 3721 --- -—- o
20 111 44 105 15 15 200 | 8177 --- -—- --
21 111) 57 22 9 67 1326 --- - --
22 1 (1 16 679 73 126 99 2879 - - ---
23 112 97 1132 1 52 133 4600 -— - ---
24 11 80 483 21 53 |-217 936 --- - ---
25 13 8 111 3 37 689 | 4475 8359 | --- -

Key

TABLE 11

" INPUT CASES TO FAILURE FOR APPLICATION TASK 2

} Rep | Fix Number || Rep | Fix Number
1 1 14 1

_ 2 1 15 1
3 3 16 6
4 1 17 1
S 1 18 1
6 1 19 1

B 7 1 20 1
8 1 21 1
9 1 22 1

= 10 1 23 2
11 1 24 1

) 12 4 25 3
13 2

) Key

Table shows input cases to failure from start of replication for
designated fix.

_ --- Indicates that error did not occur and fix was not applied during
the replication.

TABLE 12

INPUT CASES TO FAILURE FOR APPLICATION TASK 3

Fix Number

Rep | 1] 2]3]4] 5 | 6 | 7] 8 | 9 |10 11 [12] 13 | 14 | 15 | 16 | 17 | 18 | 19 |20
1 1| —|*1*]ot| s|*| 91| 5| s| sls| S| 5] s| 1[2642] 76| w= |-

2 |1 (91| *[151|136]*|151| 136 | 136 | 136 |33 | 151 | 136 | 136 | 10 | 4202 | 2352 | = | —

3 |32 || " 142 22| |12 22| 22| 22|22| 22| 22| 22 | 142 | 2890 | 569 | - | —

4 {1 —|"1*| 21 21|~ 2t 21| 20| 217} 71 21| 21| 24 | 1132 | 324 | - | —

S | 1] |°*|*"] 49| 20| *| 49| 20| 20| 20|20 | 20| 20| 20| 253 | 228 | 4553 | — | —

6 | 1] —~]"[*] 1| ww|*| in] 1] 1] 1t |aa| 1| 11| 11| 71| 383 | 287 | = | =

7 1] 1]*[*“] 50| 50| *| 50] 50| 50| 50 [10| SO | 50| 50 | 74 | 642 | 2533 | «= | —

8 | 1]47]*|"|300) 53| °|301| 53| 53| 53 |31 |.301| 53| 53| 56| 1542 | 587 | — | =

9 |1 |20 " | " |149] SL|*[149 | 51| 51| SI[S1|149| 51| 51| 40| 1757 | 1432 | — | =

10 |1]—*)*"] 59) 161 | 9| 16| 16| 16116 | 16| 16| 16| 79 | 4488 | 751 | = | —
1L | 1] = ||| 491 17| 49| 17| 17| 1717 17| 17| 17| 57 | 218 | 243 | — | =
12 |1 [*|*] 8| 41| 83| 41| 41| 4141 | 41| 41| 41| 3 |4803| 625 | — | —
13 | 1| |*| "] s8] s8] | s8] 58| 58| 58|42 | 42| 58| 58| S4 | 4160 | 3971 | 4160 | —
14 | 1] — || * 3134|118~ | 134|118 | 118 | 118 |39 | 39 | 118 | 118 | 111 | - | 238 | = | -
15 |1l 1*1"| 4| 4l 4| 4| 4| 414l 4] 4| 4] 39| 508| 508 | — | —
16 | 61— " |"]183| 13|~ |183] 13| 13| 13] 8] 8] 13| 13 | 222 | 2138 | 1323 | — | —
17 |1 10| * "] 36 36| | 36| 36| 36| 36 35| 36| 36| 36| 79 | 6635 | 837 | — | —
18 | 11150 ° | " | 324 | 134 | * | 324 | 134 | 134 | 134 |15 | 324 | 134 | 134 | 44 | 4402 | 1143 | — | —
19 (115 *[* {12 15[*[12] 15| 15| 1515|112 | 315 15| 17| 343 | 1244 | — | —
20 140 *[" 1 92| 92| 2] 2| 92| 92]4| 92| 92| 92| 20| 4258 | — |-
21 |1]28 | *| 57| 571~ | 57| s71| 571 57128 57| s7| 57 (126 | 227 | 27| — | —
2 (1 8f*{*lw1] s7{*f101] s7| s7{ s7{371101] 57| 57| 62 | 3421 | 1264 | — | —
23 | 1] 3] *[*]100]| 3[*[100] 3| 3] 3| 5/100] 31 3109 1136] 594 | = |
124 |12 [*[*| 43| 42| 43| 42| 42| 4232 | 43| 42| 42| 54 | 2993 | 499 | — | —
725 [3] 1| *| 21| 21|~ | 20| 21| 21| 21§ 1| 21| 21| 21| 104 | 5554 | 979 | — | —

Key

Table shows input cases to failure from start of replication for
designated fix.

--- Indicates that error did not occur and fix was not applied during
the replication.

*** Fix numbers 3, 4, and 7 should be ignored. There are no
corresponding fixes and faults. These fix numbers were mistakenly
added to the data. They have been kept in the Table merely to
keep the fix numbering consistent with the raw data files.

1. Report No.

NASA CR-172553

2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle

AN EXPERIMENT IN SOFTWARE RELIABILITY

5. Report Date

March 1985

6. Performing Organization Code

7. Author{s)

Janet R. Dunham and John L. Pierce

8. Performing Organization Report No.

412U-2094-12 & 14

10. Work Unit No.

9. Performing Organization Name and Address

Research Triangle Institute
P. 0. Box 12194
Research Triangle Park, NC 27709

11, Contract or Grant No.

NAS1-16489

13. Type of Report and Period Covered

12, Sponsoring Agency Name and Address Contractor Repor‘t

National Aeronautics and Space Administration

Langley Research Center
Hampton VA 23665

14. Sponsoring Agency Code

15. Sué-plemenzarv Notes

Langley Technical Monitor: G. Earle Migneault
Final Report

16. Abstract

The report documents the results of a software reliability experiment conducted
in a controlled laboratory setting. The experiment was undertaken to gather data
on software failures and is one in a series of experiments being pursued by the
Fault Tolerant Systems Branch of NASA - Langley Research Center to find a means
of credibly performing reliability evaluations of flight control software.

The experiment tests a small sample of implementations of radar tracking software
having ultra-reliability requirements and uses n-version programming for error
detection, and repetitive run modeling for failure and fault rate estimation.

The experiment results agree with those of Nagel and Skrivan in that the program
error rates suggest an approximate log-linear pattern and the individual faults
occurred with significantly different error rates.

Additional analysis of the experimental data raises new questions concerning the
phenonenon of interacting faults. This phenomenon may provide one explanation
for software relijability decay.

17. Key Words (Suggested by Author(s))

18. Distribution Statement
software reliability
fault-tolerant software
software engineering

Unclassified—Unlimited

19. Security Classif. (of this report)

20. Security Classif. (of this page) 21, No. of Pages 22. Price

Unclassified Unclassified 60

N-305 For sale by the National Technical Information Service, Springfield, Virginia 22161

